NEPCBCS 2023-24

Mathematics

M. C. E. Society's Abeda Inamdar Senior College Of Arts, Science and Commerce, Camp, Pune-1

(Autonomous) Affiliated to SavitribaiPhule Pune University NAAC accredited 'A' Grade

Faculty of Science & Technology

Choice Based Credit System Syllabus To be implemented from the academic year 2024-2025

Semester III (CBCS – Autonomy 2023 Pattern)

S.YB.Sc.(Computer Science) Mathematics

	Course Objectives
	To give the students sufficient knowledge of fundamental principles, methods, and a
1.	clear perception of in numerous power of mathematical ideas and tools and know-how to
	use them by modeling, solving, and interpreting
	To reflect the broad nature of the subject and developing mathematical
2.	tools for continuing further study in various fields of science and
	technology.
3.	To Enhance students' overall development and to equip them with mathematical
	modeling abilities, problem-solving skills, creative talent, and power of
	communication necessary for various kinds of employment.
	To enable students to develop a positive attitude towards mathematics as an
4.	the interesting and valuable subject of study.

Course	Outcome
Course	Outcome

1.	A student should be able to recall basic facts about mathematics and should be able to display knowledge of conventions such as notations, terminology and recognize basic geometrical figures and graphical displays, and state important facts resulting from their studies.
2.	A student should get a relational understanding of mathematical concepts and concerned
	structures and should be able to follow the patterns involved, mathematical reasoning
3.	A student should get adequate exposure to global and local concerns that
	explore many aspects of Mathematical Sciences.
4.	A student must be able to apply their skills and knowledge, that is, translate
	information presented verbally into mathematical form, select and use appropriate
	mathematical formulae or techniques to process the information, and draw the
	relevant conclusion.
5.	A student should be made aware of the history of mathematics and hence of its past,
	present, and future role as part of our culture.

Course Title	Mathematics for Artificial Intelligence -II		
Course Code:23SBCS31MNA			No. of Credits:2
Course Type: Minor			Total Teaching Hours:30

Syllabus

Syllabus			
Unit I	Introduction	06	
	1. Matrix Operations	02	
	2. The Inverse of a Matrix	02	
	3. Row reduction and Echelon forms	02	
Unit II	Linear Equations-I	06	
	1. System of Linear equations	02	
	2. Solution of system of Linear Equations	04	
Unit III	Linear Equations-II	12	
	1. Vectors in \mathbb{R}^n	01	
	2. Linear combination of vectors in \mathbb{R}^n	02	
	3. Null Space and Column Space of a matrix	02	
	4. Dimension and Rank	02	
	5. Linear Dependence or Independence	02	
	6. Linear transformation	03	
Unit IV	Determinants	06	
	1. Introduction to determinants	02	
	2. Properties of determinants	02	
	3. Cramer's rule, Area and Volume	02	

	Suggested Readings
1.	Linear Algebra and its Applications, David C Lay, Steven R. Lay, Judi J. MacDonald Pearson Publication, 2016, Fifth Edition.
2.	Elementary Linear Algebra with supplemental Applications, Howard Anton and others, Wiley Student Edition.

Web Reference:

1. http://math.mit.edu/~gs/linearalgebra/

2. http://www.freebookcentre.net/maths-books-download/Linear-Algebra-A-free-Linear-Algebra-Textbook-and-Online-Resource.html

Course Title Mathematics Practical-II			
Course Code:23SBCS32MNA			No.of Credits:2
Course Type: Minor			Total Teaching Sessions: 10

Sr. No	Syllabus	No. of
		Practical
1	Introduction to Scilab	2
	1. Basic syntax	
	2. Mathematical Operators	
	3. Complex numbers	
	4. Polynomials	
	5. Built-in functions	
2	Operations on Matrices	2
	1. Matrix construction	
	2. Algebraic operations on Matrices	
	3. Accessing rows and columns	
	4. Determinant and inverse of a matrix	
	5. Reduced row echelon form, Rank of a matrix	
	6. Solving systems of linear equations	
3	User-defined functions	1
	1. 'deff' command	
4	Plotting graphs using Scilab	1
	1. 2-D graph	
	2. 3-D graph	
5	Written Practical Based on Unit I:23SBCS31MNA	1
6	Written Practical Based on Unit II:23SBCS31MNA	1
7	Written Practical Based on Unit III:23SBCS31MNA	1
8	Written Practical Based on Unit IV:23SBCS31MNA	1

Course Title Mathematics for Artificial Intelligence-III			
Course Code:23SBCS41MNA			No. of Credits:2

Course Type: Minor

Total Teaching Hours:30

Syllabus

Syllabus					
Unit I	Eigenvalues and Eigen vectors	06			
	1. The characteristic equation	01			
	2. Eigenvalues and Eigenvectors	02			
	3. Diagonalization	03			
Unit II	Orthogonality	08			
	1. Inner product	01			
	2. Length and orthogonality	02			
	3. Orthogonal sets and Orthonormal sets	02			
	4. Orthogonal projections	01			
	5. Gram Schmidt's Process	02			
Unit III	Two-Dimensional Transformation	08			
	1. Representation of points	01			
	2. Transformations and matrices(Scaling,	02			
	Shearing, Reflection, Rotation)				
	3. Combined transformations/ Concatenation	02			
	4. Transformation of straight lines	02			
	i. Midpoint Transformation				
	ii. Transformation of parallel lines				
	iii. Transformation of intersecting line				
	5. Homogeneous coordinates and Translation	01			
Unit IV	Concepts of Statistics and Probability	08			
	1. Measures of central tendency	02			
	2. Measures of dispersion: Range, Variance,				
	Standard Deviation				
	3. Events and Sample Spaces	03			
	4. Concept of Probability				
	5. Conditional Probability, Bayes' theorem	03			
	(without proof).				

	Suggested Readings
1.	Linear Algebra and its Applications, David C Lay, Steven R. Lay, Judi J. MacDonald Pearson Publication, 2016, Fifth Edition.
2.	D. F. Rogers, J. A. Adams, Mathematical elements for Computer graphics, McGraw Hill Intnl Edition.
3.	StatisticalMethods, S.P.Gupta,SultanChandandSonsEducationalPublisher
4.	Fundamentals of Statistics. Vol I, A.M.Goon, M.K. Gupta, B.Das Gupta, World press

Web Reference:

1.http://math.mit.edu/~gs/linearalgebra/

2.

http://www.freebookcentre.net/maths-books-download/Linear-Algebra-A-free-Linear-Algebra-Textbook-and-Online-Resource.html

3. <u>https://www.youtube.com/watch?v=DPcVMEBDpAY</u>

4.<u>https://www.youtube.com/watch?v=55JDox30_Fk</u>

5. https://open.umn.edu/opentextbooks/textbooks/459

Course Title Mathematics Practical-III

CourseCode:23SBCS42MNA

No. of Credits:2

Course Type: Minor

Total Teaching Sessions: 10

Sr. No	Syllabus	No. of
		Practical
1	Introduction to Python	1
	1. Values and types: int, float and str,	
	2. Variables: assignment statements, printing variable	
	3. Operators, operands and precedence:+, -, /, *, **, %	
	PEMDAS(Rules of precedence)	
	4. String operations: + : Concatenation, * :Repetition5. Boolean operator:	
	i. Comparison operators: ==,! =, >, =,<=	
	ii. Logical operators: and, or, not	
	6. Mathematical functions from math, cmath modules.	1
2	Two & Three Dimensional Plots	1
	1. Installation of numpy, matplotlib packages	
	2. Two dimensional plots	
	i. Legends, labels and titles	
	ii. Setting colors, line width , line style	
	111. Subplots	
	1V. Text annotation	
2	3. Inree-dimensional Plots	2
3	Linear Algebra Using Fython	<u> </u>
	1. Matrix construct, eye(n), zeros(n,m), diagonal matrices	
	2. Addition, Subtraction, Multiplication, scalar	
	multiplication of matrices, powers and inverse of a	
	matrix.	
	S. Accessing Rows and Columns, Deleting and inserting	
	4 Determinant reduced row echelon form null space	
	column space. Rank of a matrix	
	5. Solving systems of linear equations	
	6. Eigenvalues, Eigenvectors	
4	Two Dimensional transformation Using Python	2
	1. Points	
	2. Lines, rays, and line segments:	
	3. Polygon	
	4. Triangles	
	5. Two dimensional Transformation	
		1

5	Problems Based on Unit I:23SBCS41MNA	1
6	Problems Based on Unit II:23SBCS41MNA	1
7	Problems Based on Unit III:23SBCS41MNA	1
8	Problems Based on Unit IV:23SBCS41MNA	1

Suggested Readings		
1.	How to think like a Computer Scientist: Learning with Python, Downey, A. et al., John Wiley,	
	2015. Sections: 1, 2, 3	
2.	Introduction to Scientific Computing in Python, Robert Johansson, Section: 4	
3.	Python Programming: An Introduction to Computer Science, Zelle, J., Franklin, Beedle&	
	Associates Inc.	