M. C. E. Society's

Abeda Inamdar Senior College
Of Arts, Science and Commerce, Camp, Pune-1
(Autonomous) Affiliated to SavitribaiPhule Pune University
NAAC accredited 'A' Grade

Faculty of Science \& Technology

Choice Based Credit System Syllabus
To be implemented from the academic year 2024-2025

Semester III (CBCS - Autonomy 2023 Pattern)

S.YB.Sc.(Computer Science) Mathematics

Course Objectives

To give the students sufficient knowledge of fundamental principles, methods, and a

1. clear perception of in numerous power of mathematical ideas and tools and know-how to use them by modeling, solving, and interpreting

To reflect the broad nature of the subject and developing mathematical
2. tools for continuing further study in various fields of science and technology.
3. To Enhance students' overall development and to equip them with mathematical modeling abilities, problem-solving skills, creative talent, and power of communication necessary for various kinds of employment.

To enable students to develop a positive attitude towards mathematics as an
4. the interesting and valuable subject of study.

Course Outcome

A student should be able to recall basic facts about mathematics and should

1. be able to display knowledge of conventions such as notations, terminology and recognize basic geometrical figures and graphical displays, and state important facts resulting from their studies.
2. A student should get a relational understanding of mathematical concepts and concerned structures and should be able to follow the patterns involved, mathematical reasoning
3. A student should get adequate exposure to global and local concerns that explore many aspects of Mathematical Sciences.
4. A student must be able to apply their skills and knowledge, that is, translate information presented verbally into mathematical form, select and use appropriate mathematical formulae or techniques to process the information, and draw the relevant conclusion.
5. A student should be made aware of the history of mathematics and hence of its past, present, and future role as part of our culture.

Course Title	Mathematics for Artificial Intelligence -II	
Course Code:23SBCS31MNA	No. of Credits:2	
Course Type: Minor	Total Teaching Hours:30	

Syllabus

Syllabus		$\mathbf{0 6}$
Unit I	Introduction	02
	1. Matrix Operations	02
	2. The Inverse of a Matrix	02
	Linear Equations-I	$\mathbf{0 6}$
	1. System of Linear equations	02
	2. Solution of system of Linear Equations	04
	Unit III	Linear Equations-II
	2. Linear combination of vectors in \mathbb{R}^{n}	$\mathbf{1 2}$
	3. Null Space and Column Space of a matrix	01
	4. Dimension and Rank	02
	5. Linear Dependence or Independence	02
	6. Linear transformation	02
Unit IV	Determinants	02
	1. Introduction to determinants	03
	2. Properties of determinants	$\mathbf{0 6}$
	3. Cramer's rule, Area and Volume	02
		02

Suggested Readings

1. Linear Algebra and its Applications, David C Lay, Steven R. Lay, Judi J. MacDonald Pearson Publication, 2016, Fifth Edition.
2. Elementary Linear Algebra with supplemental Applications, Howard

Anton and others, Wiley Student Edition.

Web Reference:

1. http://math.mit.edu/~gs/linearalgebra/
2. http://www.freebookcentre.net/maths-books-download/Linear-Algebra-A-free-Linear-Algebra-Textbook-and-Online-Resource.html

Course Title	Mathematics Practical-II	
Course Code:23SBCS32MNA	No.of Credits:2	
Course Type: Minor	Total Teaching Sessions: 10	

Sr. No	Syllabus	No. of Practical
1	Introduction to Scilab	2
	1. Basic syntax 2. Mathematical Operators 3. Complex numbers 4. Polynomials 5. Built-in functions	
2	Operations on Matrices	2
	1. Matrix construction 2. Algebraic operations on Matrices 3. Accessing rows and columns 4. Determinant and inverse of a matrix 5. Reduced row echelon form, Rank of a matrix 6. Solving systems of linear equations	
3	User-defined functions	1
	1. 'deff' command	
4	Plotting graphs using Scilab	1
	1. 2-D graph 2. 3-D graph	
5	Written Practical Based on Unit I:23SBCS31MNA	1
6	Written Practical Based on Unit II:23SBCS31MNA	1
7	Written Practical Based on Unit III:23SBCS31MNA	1
8	Written Practical Based on Unit IV:23SBCS31MNA	1

Course Title	Mathematics for Artificial Intelligence-III	
Course Code:23SBCS41MNA	No. of Credits:2	
Course Type: Minor	Total Teaching Hours:30	

Syllabus

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Syllabus} \\
\hline Unit I \& Eigenvalues and Eigen vectors \& 06 \\
\hline \& \begin{tabular}{l}
1. The characteristic equation \\
2. Eigenvalues and Eigenvectors \\
3. Diagonalization
\end{tabular} \& \[
\begin{aligned}
\& 01 \\
\& 02 \\
\& 03
\end{aligned}
\] \\
\hline Unit II \& Orthogonality \& 08 \\
\hline \& \begin{tabular}{l}
1. Inner product \\
2. Length and orthogonality \\
3. Orthogonal sets and Orthonormal sets \\
4. Orthogonal projections \\
5. Gram Schmidt's Process
\end{tabular} \& \[
\begin{aligned}
\& 01 \\
\& 02 \\
\& 02 \\
\& 01 \\
\& 02
\end{aligned}
\] \\
\hline Unit III \& Two-Dimensional Transformation \& 08 \\
\hline \& \begin{tabular}{l}
1. Representation of points \\
2. Transformations and matrices(Scaling, Shearing, Reflection, Rotation) \\
3. Combined transformations/ Concatenation \\
4. Transformation of straight lines \\
i. Midpoint Transformation \\
ii. Transformation of parallel lines \\
iii. Transformation of intersecting line \\
5. Homogeneous coordinates and Translation
\end{tabular} \& \begin{tabular}{l}
01 \\
02 \\
02 \\
02 \\
01
\end{tabular} \\
\hline Unit IV \& Concepts of Statistics and Probability \& 08 \\
\hline \& \begin{tabular}{l}
1. Measures of central tendency \\
2. Measures of dispersion: Range, Variance, Standard Deviation \\
3. Events and Sample Spaces \\
4. Concept of Probability \\
5. Conditional Probability, Bayes' theorem (without proof).
\end{tabular} \& 02

03
03

\hline
\end{tabular}

Suggested Readings	
$\mathbf{1 .}$	Linear Algebra and its Applications, David C Lay, Steven R. Lay, Judi J. MacDonald Pearson Publication, 2016, Fifth Edition.
$\mathbf{2 .}$	D. F. Rogers, J. A. Adams, Mathematical elements for Computer graphics, McGraw Hill Intnl Edition.
$\mathbf{3 .}$	StatisticalMethods, S.P.Gupta,SultanChandandSonsEducationalPublisher
4.	Fundamentals of Statistics. Vol I, A.M.Goon, M.K. Gupta, B.Das Gupta, World press

Web Reference:

1.http://math.mit.edu/~gs/linearalgebra/
2.
http://www.freebookcentre.net/maths-books-download/Linear-Algebra-A-free-Linear-
Algebra-Textbook-and-Online-Resource.html
3. https://www.youtube.com/watch?v=DPcVMEBDpAY
4.https://www.youtube.com/watch?v=55JDox30_Fk
5.https://open.umn.edu/opentextbooks/textbooks/459

Course Title	Mathematics Practical-III	
CourseCode:23SBCS42MNA	No. of Credits:2	
Course Type: Minor	Total Teaching Sessions: 10	

Sr. No	Syllabus	No. of Practical
1	Introduction to Python	1
	1. Values and types: int, float and str, 2. Variables: assignment statements, printing variable values, types of variables. 3. Operators, operands and precedence:+, -, /, *, **, \% PEMDAS(Rules of precedence) 4. String operations: + : Concatenation, * :Repetition 5. Boolean operator: i. Comparison operators: $==,!=,>,=,<=$ ii. Logical operators: and, or, not 6. Mathematical functions from math, cmath modules.	
2	Two \& Three Dimensional Plots	1
	1. Installation of numpy, matplotlib packages 2. Two dimensional plots i. Legends, labels and titles ii. Setting colors, line width, line style iii. Subplots iv. Text annotation 3. Three-dimensional Plots	
3	Linear Algebra Using Python	2
	1. Matrix construct, eye(n), zeros(n, m), diagonal matrices 2. Addition, Subtraction, Multiplication, scalar multiplication of matrices, powers and inverse of a matrix. 3. Accessing Rows and Columns, Deleting and Inserting Rows and Columns 4. Determinant, reduced row echelon form, null space, column space, Rank of a matrix 5. Solving systems of linear equations 6. Eigenvalues, Eigenvectors	
4	Two Dimensional transformation Using Python	2
	1. Points 2. Lines, rays, and line segments: 3. Polygon 4. Triangles 5. Two dimensional Transformation	

$\mathbf{5}$	Problems Based on Unit I:23SBCS41MNA	1
$\mathbf{6}$	Problems Based on Unit II:23SBCS41MNA	1
$\mathbf{7}$	Problems Based on Unit III:23SBCS41MNA	1
$\mathbf{8}$	Problems Based on Unit IV:23SBCS41MNA	1

Suggested Readings

1.	How to think like a Computer Scientist: Learning with Python, Downey, A. et al., John Wiley, $2015 . \quad$ Sections: $1,2,3$
2.	Introduction to Scientific Computing in Python, Robert Johansson, Section: 4
3.	 Associates Inc.

