NEPCBCS 2023-24

Statistics

M. C. E. Society's Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to SavitribaiPhule Pune University NAAC accredited 'A' Grade

Faculty of Science & Technology

Choice Based Credit System Syllabus To be implemented from the academic year 2024-2025

S.Y.B.Sc.(Computer Science) Statistics Semester III (CBCS – Autonomy 2023Pattern)

CourseTitle	Statistics for Data Science -II		
Course Code: 23SBCS31MNB			No. of Credits:2
Course Type: Minor			Total Teaching Hours:30

	Course Objectives		
1.	A student should be able to recall basic concepts and terminology in Statistics and covers		
	basic tools and methods required for data analysis from their studies.		
2.	A student able to recall basic concepts in probability, conditional probability		
	and independent events, random variable, mathematical expectation, and		
	different types of distributions.		
3.	A student able to design a statistical hypothesis about the real world problem and conduct		
	appropriate test for drawing valid inference.		
4.	A student able to recall basic arithmetic operations on vectors and matrices, including		
	inverse, determinants, eigenvalues and eigenvectors of a matrix		

	Course Outcome		
1.	Calculate the simple linear regression equation for a set of data, principles of		
	linear regression and correlation, including least square method, predicting a		
	particular value of Y for a given value of X and significance of the		
	correlation coefficient		
2.	Use discrete and continuous probability distributions, mean and variance, and		
	making decisions, define binomial outcomes and compute the probability of getting		
	X successes in N trials, use Poisson, exponential distributions to solve statistical		
	problems		
3.	Calculate inverse of a square matrix, the determinant, transpose of a square		
	matrix, and of eigenvalues and corresponding eigenvectors of a given matrix		

Syllabus

Syllabus				
Unit I	Regression (for ungrouped data)	07		
	1. Concept of linear and nonlinear regression.	01		
	2. Principle of least square, fitting straight line by method of least			
	square.	02		
	3. Concept of regression coefficients and correlation coefficient.	01		
	4. Concept of multiple regressions, Yule's Notations and Fitting of			
	multiple regression planes.	02		
	5. Concept of partial regression coefficients, interpretations.	01		
Unit II	Theory of Probability	10		
	1. Counting Principles, Permutation, and Combination.	02		
	2. Deterministic and non-determination models.	01		
	3. Random Experiment, Sample Spaces (Discrete and continuous).	01		
	4. Concept of Event.	01		
	5. Concept of Probability: classical definition, probability models,			
	axioms of probability, probability of an event, theorems of	02		
	probability (without proof).			
	6. Independence of two events, Conditional probability,	02		
	multiplication theorem $P(A \cap B) = P(A).P(B A)$			
	7. Bayes' theorem (without proof). True positive, false positive and	01		
	sensitivity			
Unit III	Random Variable and Mathematical Expectation	07		
	1. Random variable (r.v.), discrete random variable and Continuous	01		
	random Variable			
	2. Probability mass function (P.m.f.) of discrete r.v. and cumulative	02		
	distribution function (c.d.f.) of discrete r.v.	02		
	3. Mathematical expectation and variance of discrete r.v.	01		
	4. Probability mass function (P.m.f.) of continuous r.v. and	01		
	cumulative distribution function (c.d.f.) of continuous r.v.	02		
	5. Mathematical expectation and variance of continuous r.v.	01		
Unit IV	Standard Discrete Distribution	06		
	1. Discrete Uniform Distribution.	01		
	2. Binomial Distribution.	02		
	3. Geometric Distribution.	01		
	4. Poisson Distribution	02		

Suggested Readings

1.	Introduction to Linear Regression Analysis: Douglas C. Montgomery, Elizabeth A. peck, G.
	Geoffrey Vining, Wiley
2.	Fundamentals of Statistics. Vol I, A.M.Goon, M.K. Gupta, B.Das Gupta, World press

Web Reference:

- 1. <u>https://open.umn.edu/opentextbooks/textbooks/459</u>
- 2. <u>https://openstax.org/books/introductory-business-statistics/pages/5-1-properties-of-</u> continuous-probability-density-functions

Course Title	e Statistics Practical-II		
Course Code: 23SBCS32MNB			No. of Credits:2
Course Type: Minor			Total Teaching Session:10

Sr. No	Title of the Practical	No. of
		Practical
1	Introduction to Pivot Table and Pivot Charts	1
2	Lookup and Logical Functions	1
3	Regression Using MS-EXCEL	1
4	Probability using MS-EXCEL	1
5	Random Variables and Distributions Using MS-EXCEL	2
6	Problems Based on Unit I :23SBCS31MNB	1
7	Problems Based on Unit II : 23SBCS31MNB	1
8	Problems Based on Unit III : 23SBCS31MNB	1
9	Problems Based on Unit IV : 23SBCS31MNB	1

CBCS–Autonomy 2023Pattern

Course Title	Statistics for Data Science -III		
Course Code: 23SBCS41MNB			No. of Credits:2
Course Type: Minor			Total Teaching Hours:30

Syllabus

Syllabus				
Unit I	Matrix Algebra	08		
	1. Vectors in IRn	02		
	2. Matrices and Operations on Matrices	02		
	3. Determinant	02		
	4. Inverse of a matrix	02		
Unit II	Introduction to Testing of Hypothesis	02		
	1. Concepts of population and sample.	01		
	2. Definitions: random sample from a probability			
	distribution, parameter, statistic, standard error of estimator.			
	3. Concept of the null hypothesis and alternative			
	hypothesis (Research hypothesis), critical region.	01		
	4. Concept level of significance, type I and type II error.	01		
	one-sided and two-sided tests, a test of hypothesis, p-			
	value.			
Unit III	Parametric Tests	10		
	1. Large Sample Tests.	02		
	2. $H_0: \mu = \mu_0 \text{Vs} H_1: \mu \neq \mu_0 \text{ or } H_1: \mu < \mu_0 \text{ or } H_1: \mu > \mu_0$			
	(One sided and two-sided tests).	02		
	3. $H_0: \mu_1 = \mu_2 \text{Vs } H_1: \mu_1 \neq \mu_2 \text{ or } H_1: \mu_1 < \mu_2 \text{ or}$	02		
	$H_1: \mu_1 > \mu_2$ (One-sided and two-sided tests).	02		
	4. $H_0: P = P_0 \text{Vs } H_1: P \neq P_0 \text{ or } H_1: P < P_0 \text{ or } H_1: P > P_0$	02		
	(One sided and two-sided tests).			
	5. $H_0: P_1 = P_2 \text{Vs } H_1: P_1 \neq P_2 \text{ or } H_1: P_1 < P_2 \text{ or } H_1: P_1 >$	02		
	P_2 (One sided and two-sided tests).			
Unit IV	Test Based on Chi-square, t distribution & F distribution	10		
	1. Tests based on Chi-square distribution, Chi-square	03		
	test for the goodness of fit, Test for the independence			
	of attributes (mxn and 2x2)	02		
	2. Tests based on t –distribution, $H_0: \mu_1 = \mu_2 Vs$	03		
	$H_1: \mu_1 \neq \mu_2 \text{ or } H_1: \mu_1 < \mu_2 \text{ or } H_1: \mu_1 > \mu_2 (\text{One-sided})$			
	and two-sided tests).	02		
	3. Paired t-test.			
	4. Test based on F- distribution, F-test for testing	02		
	significance of equality of two population variances.			

	Suggested Readings		
1.	Fundamentals of Statistics, Sixth Revised and Enlarged Edition, S.C. Gupta, HimalayaPublishing House.		
2.	Linear Algebra and its Applications, David C Lay, Steven R. Lay, Judi J. MacDonald Pearson Publication, 2016, Fifth Edition.		

Web Reference:

- 1. <u>http://math.mit.edu/~gs/linearalgebra/</u>
- 2. <u>https://openstax.org/books/introductory-business-statistics/pages/5-1-properties-of-continuous-probability-density-functions</u>

Course Title	Statistics Practical-III		
Course Code: 23SBCS42MNB			No. of Credits:2
Course Type: Minor			Total Teaching Session:10

Sr. No	Title of the Practical	No. of Practical
1	Introduction to R-software	1
2	Charts and Plots using R-Software	1
3	Basics of Statistics Using R-software	1
4	Probability and Distributions Using R-software	1
5	Testing of Hypothesis Using R-software	1
6	Matrix and Matrix Operations Using R-software	1
7	Problems Based on Unit I :23SBCS42MNB	1
8	Problems Based on Unit III : 23SBCS42MNB	2
9	Problems Based on Unit IV :23SBCS42MNB	1

Suggested Readings		
1.	Introduction to Statistics and Data Analysis With Exercises, Solutions and	
	Applications in R, Christian Heumann, Michael Schomaker Shalabh.	
2.	Using R for Data Analysis and Graphics Introduction, Code and Commentary J H	
	Maindonald Centre for Mathematics and Its Applications, Australian National	
	University.	