(Autonomous)

Syllabus under Autonomy S.Y. B. Sc. Electronic Science (For Computer Science)

Academic Year (2022-2023)

(Under the faculty of Science and Technology)

Syllabus under Autonomy S.Y. B. Sc. Electronic Science (For Computer Science)

Titles of Papers and Scheme of Study

	Paper /	Paper	Paper Title		Lectures/ practical	Evaluation		
SEM	subject code			Credits	per week	C.A.	U.E.	Total
	21SBCS231E	Ι	8051 Microcontroller and Programming	2	3	20	30	50
III	21SBCS232E	II	Electronic Communication	2	3	20	30	50
	21SBCS233E	III	Electronics Lab-III	2	4.5	20	30	50
	21SBCS241E	Ι	Embedded System Using Raspberry Pi	2	3	20	30	50
IV	21SBCS242E	II	Internet of Things and Wireless Technology	2	3	20	30	50
	21SBCS243E	III	Electronics Lab-IV	2	4.5	20	30	50

NOTE:

- 1. One practical per week (each practical of 04 hours & 20 minutes)
- 2. Per batch maximum 12 students.

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

S.Y. B. Sc.(Comp. Sc.) Electronic Science

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	8051 Microcontroller and Programming
Course Code	21SBCS231E
Semester	III
No. of Credits	2

Aims & Objectives of the Course:

Sr. No.	Objectives		
1	To study the basics of 8051microcontroller		
2	To understand the internal architecture of 8051 Microcontrollers.		
3	To understand and acquire knowledge in programming 8051Microcontroller using assembly and Embedded C		
4	To study the interfacing techniques of 8051microcontroller		

Sr. No.	Learning Outcome
1.	Understands basics and architecture of 8051 Microcontroller
2.	Write 8051 Assembly level programs using 8051 instruction Set and C
3.	Interface simple switches, simple LEDs, ADC 0804, LCD and Stepper
	Motor to 8051 using 8051 I/O ports.
4.	Design 8051 Microcontroller based applications for simple real-world
	applications.
5.	The students can design mini project based on 8051 microcontrollers
	using Assembly and/or C language.

Unit No		Title with Contents	No. of Lectures
Unit I	The Intel Microcontroller 8051		9
	1.	Introduction to the concepts of microprocessors, microcontrollers	1
	2.	Features of 8051microcontroller	1
	3.	Block diagram of 8051	2
		i) A and B Register ,Program Status Word (PSW)	
		ii) Program Counter, DPTR	
		iii) Memory Organization – RAM & ROM	
		iv) Register Banks and Stack	
	4.	Functional Pin out diagram and description of pins	2
	5.	Special function registers (SFRs)	1
	6.	I/O port organization	1
	7.	Interrupts	1
Unit II	Instru	ction Set of 8051 & Addressing modes	6
	1.	Classification of Instruction Set with syntax and function	
		i) Data transfer group	1
		ii) Arithmetic group	1
		iii) Logical group	1
		iv) Branching group	1
		v) Bit Manipulation Group.	1
	2.	Addressing modes - Immediate, register, direct, register indirect and	1
		indexed addressing modes	
Unit III	8051 l	Programming in Assembly Language and C	10
	1.	Features of machine language, assembly language, middle-level and	2
		high-level languages. Introduction to embedded C	
	2.	Data types & directives.	1
	3.	Programs using Assembly Language	4
		i) Arithmetic Operations	
		ii) Sum of n-numbers	
		iii) Block transfer	
		iv) Finding smallest and largest number from a set of numbers.	
		v) Assembly language programming for interfacing LED	

	4.	Programs in embedded C-	3
		i) Write a program to load three numbers into Accumulator and	
		send them to port	
		ii) Write a program to send hex values for ASCII Characters to port	
		iii) Program to send values 00-FF to Port	
Unit IV	Timer	/ Counter , Interrupts in 8051 and Interfacing of Peripheral	11
	1.	Timer registers - Timer0, Timer1	1
	2.	Configuration of TMOD (Timer Mode)	1
	3. TCON (Timer Control) registers		1
	4. Timer modes- Mode1, Mode2 programming		1
	5.	Programming for time delay using mode 1 and mode 2.	1
	6.	Interrupts and its Type	1
	7.	Interfacing of Devices : LED and Switch ,ADC 0804, DAC for	5
		waveform generation, LCD Module, DC Motor, Stepper motor	

References:

- Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay, The 8051 Microcontroller and Embedded Systems – using assembly and C, Pearson.
- 2) Kenneth J. Ayala, The 8051 Microcontroller, 3rd Edition, Delmar Cengage Learning
- 3) Manish K Patel ,The 8051 Microcontroller Based Embedded Systems , McGraw Hill
- Raj Kamal ,Microcontrollers: Architecture, Programming, Interfacing and System Design, Pearson Education.
- 5) Rao, Dr. K Uma, The 8051 Microcontrollers: Architecture, Programming and Applications, Pearson Education India, New Delhi

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

S.Y. B. Sc.(Comp. Sc.) Electronic Science

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Electronic Communication
Course Code	21SBCS232E
Semester	III
No. of Credits	2

Aims & Objectives of the Course:

Sr. No.	Objectives
1	To introduce to all aspects of electronic communication system
2	To introduce various Analog and digital modulation schemes
3	To identify the need of data coding and error detection/correction mechanism.
4	To study bandwidth utilization techniques as multiplexing and Spectrum spreading.
5	To Know working of wireless technologies such as Mobile communication, GSM, GPRS.

Sr. No.	Learning Outcome
1)	Define and explain terminologies of data communication
2)	Understand the impact and limitations of various digital modulation techniques.
3)	To acknowledge the need of spread spectrum schemes.
4)	To understands the working of wireless technologies such as Mobile
	communication, GSM, GPRS.

Unit No	Title with Contents	No. of Lectures
Unit I	Introduction to Electronic Communication	9
	1) Introduction to Communication:	1
	Need of electronic Communication System	
	History of electronic Communication System	
	2) Block Diagram of Electronic Communication System	1
	Elements of Communication system	
	• Types of noise sources	
	3) Electromagnetic spectrum, signal and channel bandwidth	1
	4) Information Theory:	
	• Information entropy	2
	• Rate of information (data rate, baud rate),	
	Channel capacity	
	• Nyquist theorem,	
	Hartley Theorem	
	• Signal to Noise ratio	
	• Noise Figure	
	Shannon theorem	
	5) Types of Communications:	2
	Simplex	
	• Half duplex	
	• Full duplex	
	• Baseband	
	Broadband	
	6) Serial Communication : Asynchronous and Synchronous,	
	7) Error Handling Codes: Necessity, Hamming code, CRC	1
		1
Unit II	Modulation and Demodulation	5
	1. Introduction to Modulation and Demodulation:	1
	• Concept and need of modulation and demodulation,	
	2. Types of Modulation Techniques:	2
	• Analog Modulation Techniques: AM , FM and PM	2
	Pulse Modulation Techniques : PAM, PCM	1
• • · • • • • • • • • • • • • • • • • •	Digital Modulation Techniques: ASK,FSK	
Unit III	Multiplexing, Spectrum Spreading and Media Access Control	13
	1. Multiplexing Techniques:	3
	Frequency division Multiplexing	
	Wavelength Division Multiplexing	
	Time Division Multiplexing	

2. Spread Spectrum Techniqu	les: 3
Frequency Hopping	Spread Spectrum
Direct Sequence Spre	ead Spectrum
3. Media Access Control (MA	C):
Random Access Prot	tocol: 4
ALOHA	+
• CSMA	
CSMA/CD	
CSMA/CA	
4. Controlled Access Protocols	s: 3
Reservation, Polling	-
Channelization Prote	ocols: FDMA
• TDMA, CDMA.	
Unit IV Wireless Communication: Cellular	
1. Overview of wireless comm	unication 1
2. Overview of Cellular Telep	• •
(W-CDMA, UMTS), 4G(LT)	
3. Introduction of cellular tele	ephony system: 2
Frequency reuse	
Handoff strategies,	
Co-channel and Adjac	cent channel interference
Block Diagram of Mo	bile Handset
4. GSM : Architecture, Frame	structure, Mobility Management 2
5. GPRS : Architecture, Applic	

References:

- 1) Electronics Communication systems, Fourth Edition, Tata McGraw Hill publication.
- 2) Electronic Communication, Dennis Roddy and John Coolen.
- 3) Communication Electronics: Principles and Applications, Frenzel, Tata McGraw Hill publication, 5th edition.
- 4) Wireless Communications Principles and Practice, Rappaport, Pearson publication.

M. C. E. Society's

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

S.Y. B. Sc. (Comp. Sc.) Electronic Science

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Electronics Laboratory-III
Course Code	21SBCS233E
Semester	III
No. of Credits	2

Aims & Objectives of the Course:

Sr. No.	Objectives
1	To get hands on training of Embedded C
2	To study experimentally interfacing of 8051 microcontroller
3	To design, build and test modulator and demodulators of digital communication
4	To build and test experimentally various techniques of wired communication

Expected Course Specific Learning Outcome :

Sr. No.	Learning Outcome
1.	To design and build his/her own microcontroller based projects
2.	To acquire skills of Embedded C programming
3.	To know multiplexing and modulation techniques useful in developing
	wireless application
4.	Do build and test own network and do settings.

The practical course consists of 10 experiments. After studying the theory and practical student can design and develop working models using 8051 Microcontroller

• The practical course consists of 10 experiments out of which ONE (Compulsory) will be working model using 8051 Microcontroller.

- These will be evaluated in an oral examination for 15% marks at internal and external semester examination.
- Each Practical batch will have maximum 12 students.

• List of Major Equipment/ Instrument with Broad Specifications

- i) Microcontroller 8051 trainer Kit
- ii) 8051 Simulator software (Free downloadable)
- iii) Computer System(p-IV and latest version)
- iv) Peripheral Interfacing Trainer kits

List of Practical (Minimum 08, 4 from each group)

Sr. No.	Title of Experiment	
	Group-A	
1	Assembly language programs based on Arithmetic Instructions	
	i) Addition of two 8-bit numbers (Using Registers & Memory)	
	ii) Subtraction of two 8-bit numbers. (Using Registers & Memory)	
	iii) Multiplication of two 8-bit numbers using MUL instruction.	
	iv) Division of two 8-bit numbers using DIV instruction.	
2	Logical & code conversion problems using assembly programming	
	i) Code Conversion	
	ii) Transfer block of data from one memory locations to another memory	
	locations	
	iii) Sum of two arrays.	
3	Traffic light controller using 8051 microcontroller	
4	Interfacing LCD to 8051Microcontroller	
5	Speed Control of stepper motor using 8051 microcontroller	
6	Develop a 4 bit binary counter with 8051 and display out put on LCD	
7	Waveform generation using DAC Interface to 8051Microcontroller	
8	Event counter using opto-coupler, seven segment LED/LCD display interface to	
	8051Microcontroller.	
	Group-B	
1	Study of Amplitude Modulation technique.	
2	Study of Pulse Amplitude Modulation technique.	
3	Study of Frequency Shift Keying.	
4	Study of Time Division Multiplexing	
5	Study of Frequency Division Multiplexing.	
6	Study of Error detection and correction by using Hamming Code technique.	

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

S.Y. B. Sc.(Comp. Sc.) Electronic Science

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Embedded System using Raspberry Pi
Course Code	21SBCS241E
Semester	IV
No. of Credits	2

Aims & Objectives of the Course:

Sr. No.	Objectives
1	To understand the concept of Embedded systems.
2	To study the design flow and available tools for an Embedded system.
3	To study basics of Raspberry Pi 3 and hardware structure
4	To study Python and Library files for Raspberry Pi
5	To familiarize the students with the programming and interfacing of different devices with Raspberry Pi Board.
6	Understand basics of Raspberry Pi coding and interfacing different modules

Sr. No.	Learning Outcome	
1.	The students will be able to understand the working of Raspberry Pi and	
	its features and how various components can be used with Pi.	
2.	To apply the knowledge of software development for the Embedded	
	Hardware	
3.	Learn interfacing different peripherals with Raspberry Pi	
4.	The students will be able to design mini project based on Raspberry Pi.	

Unit No	Title with Contents	No. of Lectures
Unit I	Introduction to Embedded systems using single board computers (SBC)	
	Single boards computer block diagram, types, Comparison of SBC models, Specifications, I/O devices (Storage, display, keyboard and mouse)	
Unit II	Getting Started with Raspberry Pi	8
	 Architecture of SoC, Basic version Broad Coprocessor Raspberry Pi – Introduction-Basics, applications, installation. Pin Description of Raspberry Pi, Preparing SD Card for Raspberry Pi Different OS versions First boot, Configuration, time setting, keyboard layout, disk expand, etc 	1 2 2 1 1 1
Unit III		10
	 Overview of Raspbian OS (Operating System), Installation, different types of Operating Systems. Basic Python Programming 	2
	 i) Variable, Keywords, Operators and Operands ii) Data types iii) Flow Control and Conditional statements iv) Loops and importing Libraries 	1 1 2 1
	 v) Functions: I/O function (GPIO, Digital), Time functions, Library functions vi) Basic Arithmetic Programs: Addition, Subtraction, Multiplication, Division 	2 1
Unit IV	Interfacing of devices using Python Programming	10
	 Function of GPIO Pins and Interfacing Basic interfacing: LED, Switch, LCD Internal Advanced: Bluetooth, Wifi, Ethernet, External advanced: Camera, Serial Communication GSM, Ultrasonic Sensor, PIR, Finger Print reader. 	1 2 7

References:

- Simon Monk, "Programming the Raspberry Pi: Getting Started with Python", January 2012, McGraw Hill Professional
- 2) Eben Upton and Gareth Halfacree, "Raspberry Pi User Guide", John Wiley & Sons
- 3) Alex Bradbury and Ben Everard, "Learning Python with Raspberry Pi", John Wiley & Sons
- Paul Gries, et al, "Practical Programming: An Introduction to Computer Science Using Python 3", Pragmatic Bookshelf, 2/E 2014
- 5) Charles Dierbach, "Introduction to Computer Science Using Python", Wiley Publication
- 6) John Paul Mueller, "Beginning Programming with Python for Dummies Paperback 2015"
- Beginner's Python Tutorial: http://en.wikibooks.org/wiki/A Beginner%27s Python Tutorial.

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

S.Y. B. Sc.(Comp. Sc.) Electronic Science

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Internet Of Things And Wireless Technologies
Course Code	21SBCS242E
Semester	IV
No. of Credits	2

Aims & Objectives of the Course:

Sr. No.	Objectives
1	To learn and understand basics of Internet of Things.
2	To learn and understand Network Technologies used in IOT.
3	To study basics of Arduino
4	To learn and understand applications of wireless communication system.
5	To learn and understand architecture of short range Wireless Technologies.
6	To study uses of Arduino in IOT.

Sr. No.	Learning Outcome
1	To introduce to upcoming technology of Internet of Things.
2	To understand various types of networks and short range device used in IOT
3	To understand Various Protocols used in IOT
4	To get familiar with use of Arduino Uno for IOT applications
5	Able to interface IoT based applications using Arduino

Unit No.	Title with Contents	No. of Lectures
Unit I	Fundamentals of IoT	14
	1) Concept of IoT	1
	2) Evolution of IoT	2
	3) Seven Layer IoT Architecture	1
	4) Characteristics of IoT: Power consumption, Physical	1
	security, Durability, Secure Connectivity, Secure Data	
	Storage, Data volume ,Scalability	
	5) Machine to Machine and IoT	1
	6) Role of Cloud in IoT	1
	7) Cloud Topologies	1
	8) Cloud Access	
	9) Protocols in IoT: MQTT, CoAP, XMPP and AMQP,	1
	10) IoT communication models	1
	11) Cross connectivity of IoT system to wireless Devices	
	• Device to Gateway-short range Wireless: Use of	1
	Cellphone as gateway, dedicated wireless Access points	1
	• Gateway to Cloud: Long range connectivity, (wired,	2
	cellular, Satellite, WAN),	
	 Direct Device to Cloud connectivity 	
Unit II	Short Range Wireless Technologies and Networking	10
	1) Short Range Technologies:	
	Bluetooth: Bluetooth architecture, Bluetooth	1
	protocol stack Bluetooth frame structure	
	 ZigBee: Architecture, Topologies and Applications 	2
	 Z-wave: Protocol Architecture and Applications 	1
		1
	• RFID: working of RFID system, types of RFID tags,	-
	RFID frequencies and Applications	
	2) Networking :	1
	Introduction to Networking	1
	• Types of Networks: PAN,LAN,WAN, Ring	1
	• Low power local area networking (LPLAN)	1
	• Low power wide area networking (LPWAN)	1
	technologies	1
	• Comparison of LoRa, sigfox NB-IoT, Cat –M	1
Unit III	Introduction to Arduino	8
	1) Arduino: Overview of Arduino and Arduino Family	1
	2) Arduino Platform:	1
	Hardware and Software	1
	Onboard Arduino components	1

	3) Pin out Diagram for Arduino Uno and Significance of Pins	1
	4) IDE Platform for Arduino	2
	5) Arduino Sensors and Library Functions	1
Unit-IV	Arduino based IoT Applications	4
	1) Interfacing Humidity sensing device to Arduino	1
	2) Interfacing Temperature sensing device to Arduino	1
	3) Interfacing RFID system using Arduino	1
	4) Interfacing Zig-bee to Arduino	1

Recommended Books:

- 1. Internet of Things : Principles and Paradigms, Raj Kumar Buyya and Dastjerdi, MK publishers
- 2. Internet of Things, Mayur Ramgir, Pearson publication
- 3. Wireless Communications Principles and Practice, Rappaport, Pearson publication
- **4.** Getting Started With Arduino: by Mossimo Banzi ,2nd Edition
- **5.** Arduino For Beginners: Essential Skills every Maker Needs by John Baitchal

M. C. E. Society's

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

S.Y. B. Sc.(Comp. Sc.) Electronic Science

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Electronics Laboratory-IV
Course Code	21SBCS243E
Semester	IV
No. of Credits	2

Aims & Objectives of the Course:

Sr. No.	Objectives
1	To get hands on training for Python Language
2	To study experimentally interfacing of Raspberry Pi
3	To educate and train students for upcoming technology in wireless communication.
4	To build Arduino based IoT system

Expected Course Specific Learning Outcome:

Sr. No.	Learning Outcome
1.	To acquire skills of Python programming for simple applications
2.	To interface various I/O peripherals to Raspberry Pi
3.	To design and build Raspberry Pi based projects
4.	To design and build IoT based system using Arduino.

The practical course consists of 10 experiments. After studying the theory and practical student can design and develop working models using Raspberry Pi.

- The practical course consists of 10 experiments
- These will be evaluated in an oral examination for 15% marks at internal and external semester examination.
- Each Practical batch will have maximum 12 students.

• List of Major Equipment/ Instrument with Broad Specifications

- i) Raspberry Pi Board
- ii) Computer System(Latest version)
- iii) Peripheral Interfacing Trainer kits

List of Practical (Minimum 08, 4 from each group)

Sr. No.	Title of Experiment		
	Group-A		
1	Interfacing LEDs to Raspberry Pi using GPIO pins		
2	Interfacing a switch connected to the GPIO pins and display status on LED using		
	Raspberry Pi		
3	Interfacing LCD to Raspberry Pi		
4	Interfacing temperature sensor to Raspberry Pi to detect temperature		
5	Interfacing photo sensor to Raspberry Pi to detect light intensity		
6	Interfacing PIR sensor using Raspberry Pi for motion detection		
7	Interfacing Pi Camera to Raspberry Pi		
_	Group-B		
1	Study of GSM system (Message transmission & Reception).		
2	To study and interface Zig-bee for one Application using Arduino.		
3	To Study and interface of RFID system using Arduino.		
4	To study and interface a Switch to Arduino.		
5	To study Arduino based LED switching using Mobile/Bluetooth Device.		
6	To study and interface Humidity sensor using Arduino		
7	To study and interface Temperature sensing device to Arduino.		